

The unique intervention with GRP pipes DN 2700 - PN 6 – 1 km inside the concrete diversion tunnel In S. Valentino (BZ – Italy)

> Ing. Sabatino Riccio Project Manager ROTECH SRL

ROTECH risanamento e rinnovamento tubazioni

25th May 2023

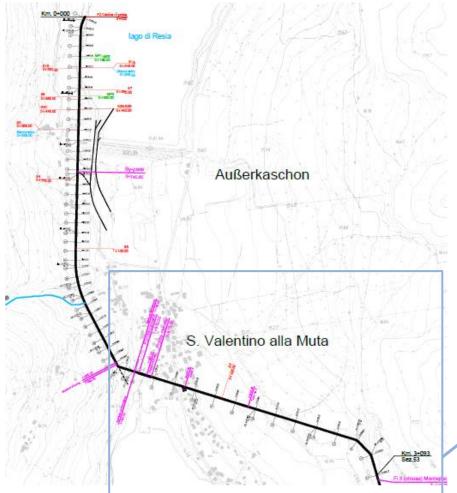
CLIENT AND CONTRACTORS

Client	ALPERIA ViPower AG
R.U.P	Dr. Ing. Giacomo Fantoma
Construction Management	Dr. Ing. Daniele Faggin
Ass. Dir. of Works	Dr. Ing. Stefano Pernici
Ass. Dir. of Works	Geom. Alessandro Olivotto
C.S.E	Dr. Ing. Giovanni Carlini
Project designer	Dr. Ing. Roberto Bertero
Project designer	Dr. Ing. Vittorio Tresso

Project Manager: Ing. Sabatino Riccio Site Manager: Geom. Franco Congiu Site Manager: Geom. Paolo Gallus

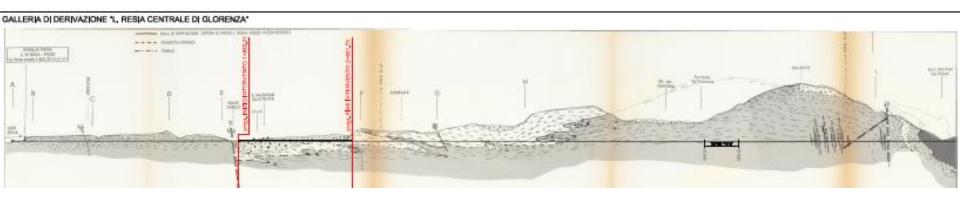
CONTRACTORS

Rotech Srl Relining GRP (OS35)


P.A.C. S.P.A. Gallery Preparatory Works (OG2)

GEOGRAPHICAL POSITION

The tunnel runs for a length of approximately 12 km up to the power station. The relining section involves 1 km located in San Valentino (BZ)



GEOGRAPHICAL POSITION

Relining GRP: Length = 998,72 m Progressive Relining Start : 1853,00 Progressive Relining End : 2851,72

GALLERY INITIAL CONDITION

No cracks have ever appeared in the tunnel.

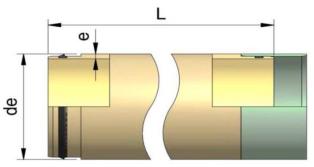
Purpose: restoring the hydraulic functionality.

Considering the size of the GRP pipes and taking into account the grout injections, preparatory activities were necessary for the relining works.

STATE OF THE TUNNEL AFTER INTERVENTION TO LIMIT WATER INGRESS

Operations carried out manually:

- water jet cleaning
- levelling of the bottom of the tunnel
- localized demolition and scarification
- eliminating the riveting (consisting of plates and bolts)



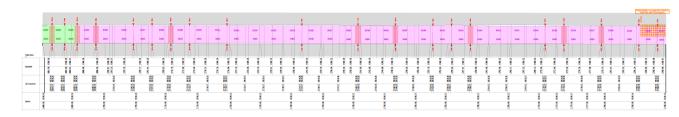
GRP PIPE: FLOWTITE GREY

DN 2700 - PN 6 - SN 10000 - WATER PRESSURE SYSTEM (Amiblu)

		Unità	Tubazione	Manicotto
Diametro nominale	DN		2700	2700
Pressione nominale	PN	bar	6	6
Rigidezza nominale	SN	N/m ²	10000	10000
Diametro esterno	d,	mm	2759 +6/-1	2773 +5/-1
Diametro Maschio tubazione	d _{eo}	mm	2758.5 +0.5/0.5	
Diametro interno, minimo	dimin	mm	2656.5	2745
Spessore, minimo	e	mm	50.5	14
Densità materiale PRFV	ρ,,,,,	kg/dm ³	2.0	1.6
Modulo a trazione circonferenziale	E₀₁	GPa	10.0	
Modulo a flessione circonferenziale	E.,	GPa	20.0	
Modulo a trazione longitudinale	ELT	GPa	6.0	
Resistenza a trazione circonferenziale, specifica	6 ₀₁	N/mm ²	129.3	
Resistenza a trazione longitudinale, specifica	6 .,	N/mm²	22.0	
Coefficiente di Poisson	v		0.22	
Coefficiente di dilatazione termica	α	1/C°	26 * 10⊸	
Scabrezza Idraulica	k	mm	0.029	
Lunghezza manicotto	L	mm		367

EN 1796: GRP pipe system for water supply with or without pressure

I valori della tabella precedente sono stati calcolati in base a un primo disegno della tubazione. Possono essere aggiornati con il disegno revisionato di produzione.



THE PROJECT - PLANIMETRIC PROFILE

Following the 3D laser-scan measurement, a plano-altimetric profile was obtained.

Therefore, pipes of different lengths were used: 2, 3, 4 and 6 m.

THE UNLOADING AND STORAGE OF PIPES

Pipe unloading and transport

The pipes arrived from Spain on special wheeled transport.

Each transport included 12 metres of pipes.

Storage area

PIPE UNLOADING AT THE ONLY INSERTION POINT

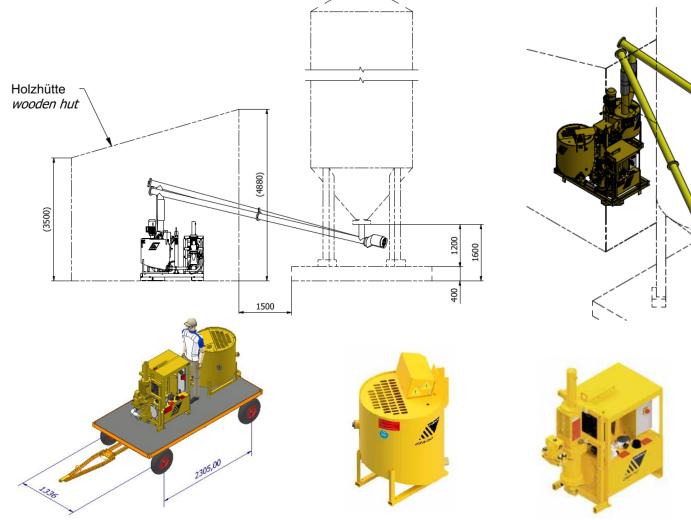
Once the pipes reached the point specified in the laying plan, they were coupled using a hydraulic system. The connection was carried out with special equipment to ensure that the pipe was inserted into the coupling sleeve. Each pipe weighs 1 ton meter, two excavators were used to unload and insert the pipes. The pipes were transported inside for a length of 1 km using specially designed carts.

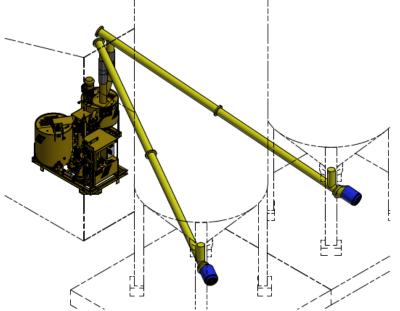
GAP INJECTION BETWEEN GRP PIPE AND EXISTING TUNNEL

Creteo[®]Inject CC 854 SM

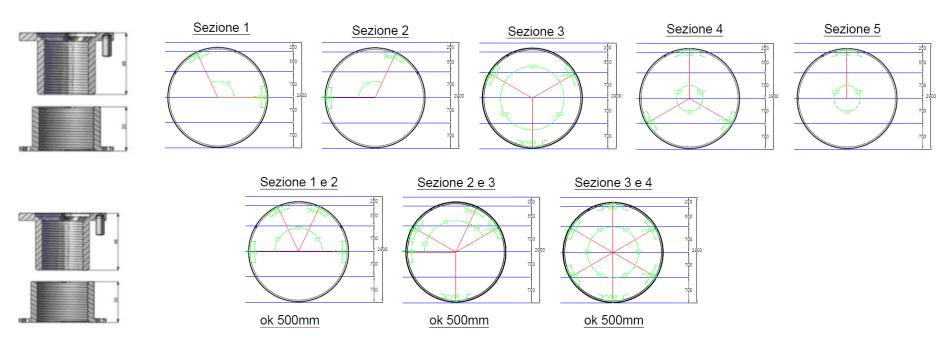
Malta per ancoraggi con superfluidificante

	Create altria	at CC 054 DM Almonia Dantasti		
	W/F	ct CC 854 SM AlperiaPartschi		
Prova 1115	(acqua/miscel	Miscela di base (GM)	GM + 0,2 % FM	GM + 0,4 % FM
09.11.2021	a)	0,60	0,50	0,40
P-Numero		2	4	6
Densità apparente	kg/lt	0,995	0,995	0,995
Peso specifico	to/m ³	1.665	1.750	1.850
ABM	mm	400	400	450
Massa sedimentata			Vertikal	Vertikal
24 Std	%	-2	-1	0
		3		6
Inizio solidificazione	h	< 5	<4	< 3
Resistenza alla compressione	1			
DF (1d)	Mpa	0,50	1,70	2,90
DF (3d)	Mpa	1,40	2,20	5,20
DF (7d)	Mpa	2,00	3,80	6,80
DF (14d)	Мра	2,50	4,60	7,50
DF (28d)	Мра	3,20	6,50	10,50
DF (28d)	Mpa	per la miscela di base con un W/F di 1,00	1,2 per il ca	alcolo statico


Dati tecnici:

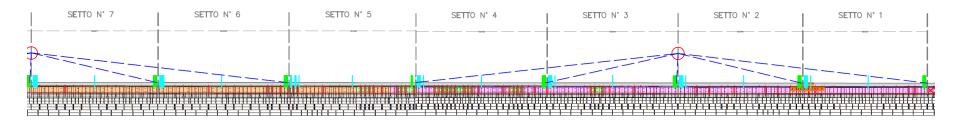

Dati teomor.	
Cod. art.	2000694375
Imballaggio	
Quantità per unità	1.000 kg/cf.
Granulometria	0 – 0,09 mm
Resa malta bagnata	ca. 0,995 kg/l
Valore W/F	0,40 + 0,4 % fluidificante
Fabbisogno d'acqua	400 l/t
Peso specifico malta	ca. 1.850 kg/m³
fresca	
Misura di assettamento (ABM)	ca. 450 mm
Unità di sedimentazione (24 h)	ca0,0 %
Inizio della presa	ca. 3,0 h
Resistenza alla compressione (28 d)	> 7,0 MPa
Resistenza alla compressione (28 d)	con W/F di > 0,40 – 1,00
dietro al tubo	> 2,5 MPa
Tempo di lavorazione	< 180 min

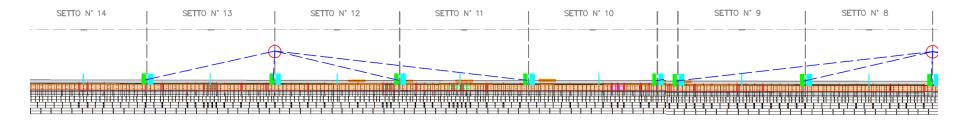
THE GROUT INJECTION DESIGN - THE CHOICE OF THE INJECTION SYSTEM



THE GROUT INJECTION DESIGN - THE INJECTION VALVE AND ITS POSITION IN THE PIPE

Stainless steel injection nipples were installed on the pipe by the manufacturer where the mortar was injected and then sealed with a plug and laminated.





THE INJECTION SEPTA

17 internal sections every 60 m.

The injection design required a pump to be positioned at a distance of 120 m from the injection point.

SETTO N 17 SETTO N' 16 SETTO N' 15

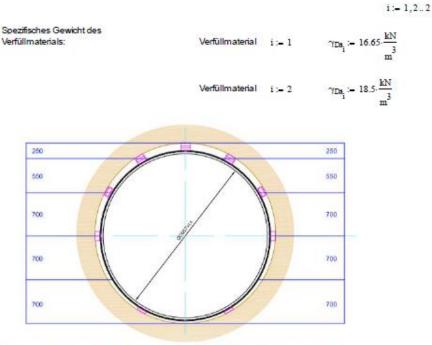
4 sections were completed from one point.

THE INJECTION SEPTA

The mortar was stored outside in 14 silos of approximately 20 ton each.

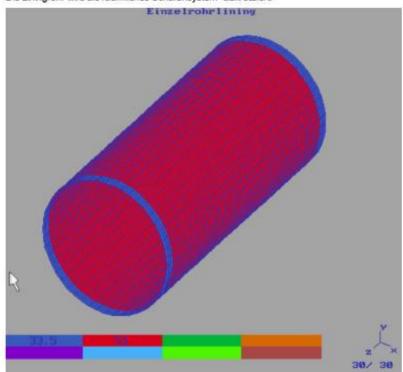
The mixed mortar was pumped into the tunnel through DN 50 pipes for a length of 900 m to another mixing plant located on a mobile cart.

The injection was carried out in layers so as not to create a floating effect, from downstream to upstream.



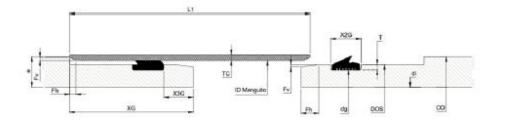
FINITE ELEMENT MODELLING OF THE PIPE

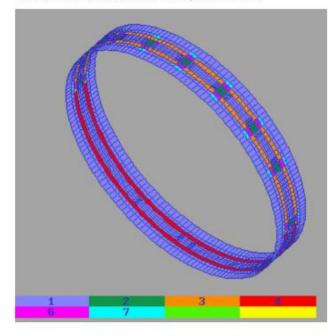
5. Lagerung und Einwirkungen


Die Lagesicherung erfolgt durch Abstützungen (Verkeilungen) beidseits des Scheitels im Abstand von 30°, 60° und 90°.

Auch wenn die Verfüllung des Ringraumes zwischen Liningrohr und Altrohr mit Dämmer lagenweise durchgeführt wird, muss als hydrostatischer Druck auf das Liningrohr der volle Druck des Verfüllmaterials bis zum Spiegel des Verfüllmaterials bei der letzten Lage angesetzt werden (RSV-Merkblatt 3.2 "Verfüllen von Ringräumen bei der Renovierung von Abwasserleitungen und -kanälen durch Liningverfahren", März 2016)

Für die Berechnung angesetzte Lagesicherung des Liningrohres mit den nacheinander einzubringenden Lagen The deformation of the pipe during the injection phase was verified (FEM).

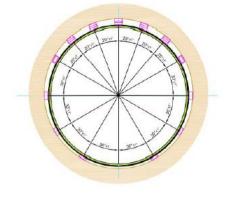

Die Liningrohr wird als räumliches Schalensystem diskretisiert.



FINITE ELEMENT MODELLING OF THE PIPE SLEEVE

Using a FEM model, the deformation of the coupler during the injection phase was verified.

Die Manschette wird als räumliches Schalensystem diskretisiert.



5.2 Lagerung und Einwirkungen

5.2.1 Lagerung und Steifigkeit der Keile

Die Lagesicherung erfolgt durch Abstützungen (Verkeilungen) beidseits des Scheitels im Abstand von 20°, 40,° 60° und 90° (Kämpfer), die zwischen dem Altrohr und der Mansche te eingebracht werden (s. Abbildung

Somit wird die aus dem Auftrieb resulferende Vertikalkraft aus den Rohren zunächst über die Dichtungen in die Manschette eingeleitet. Von dort wird sie auf die Abstutzungen verteit, die sie hrersets ins Altrohr einletten. Die Manschette hat dabei analog einer Schweille die Funktion, die weitgehend gleichförmige Last aus der Dichtung tangential bis zu den Auftagem weiterzuleiten (s. Abbidung 1).

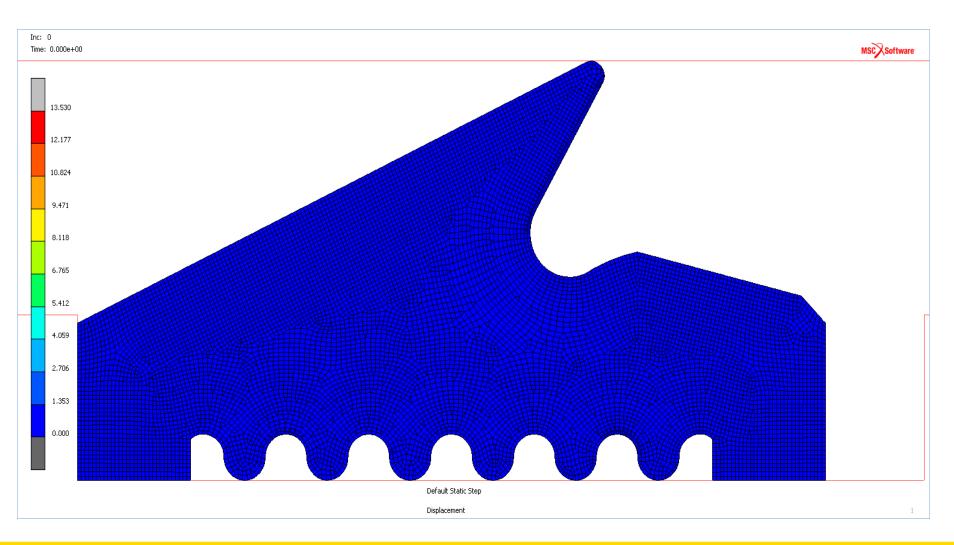

Being the most delicate part of the system, several wooden supports were introduced.

Abbildung 2: FEM-Netz der Manschette

FINITE ELEMENT MODELLING – Mortal injection

THE LAMINATIONS SYSTEM

Maximum permissible opening in the joints 0.3° or 19 mm.

The joints were laminated with resins and glass fibre with a width of 500 mm and a thickness of 20 mm.

THE LAMINATIONS SYSTEM

APS/DWA M143-20:2005-11 // Wasserdichtheit

Prüfergebnisse

Die Prüfergebnisse beziehen sich ausschließlich auf den vorliegenden Prüfegenstand P22-48364. Etwaig angegebene Sollwerte wurden vom Auftraggeber zur Verfügung gestellt. Die SBKS GmbH & Co. KG übernimmt für die Richtigkeit dieser Angaben keine Gewährleistung. Report

Start Time: 14/02/22 16:53:20 End Time: 15/02/22 13:38:20 Sampling rate: 900sec Data number: 84 Femp Alarm HI: 40 °C Temp Alarm Low: -16 °C RH Alarm HI: 99 %RH RH Alarm Low: 29 %RH Femp MAX: 22.6 °C @16:53:20 14/02/22 Temp MIN: 3.7 °C @05:53:20 15/02/22 Temp AVG: 6.73 °C

RH MAX: 98.3 %RH @23:23:20 14/02/22 RH MIN: 20.6 %RH @16:53:20 14/02/22 RH AVG: 83.10 %RH

Prüfdatum	2022-02-14	Verfahren	APS			
Prüfer(in)	B. König	Konditionierung	23 °C / 50 9	23 °C / 50 % r. F.		
		Prüffläche	Kreis Ø 45 s	Kreis Ø 45 ± 5 mm Fluorescein-Lösung 30 min		
		Prüfflüssigkeit	Fluorescein			
		Prüfzeit	30 min			
		Prüfdruck	0,5	0,5		
Parameter		Ergebr	nis	Beurteilung		
Wasserdichthe	it			erfüllt		

DIN EN ISO 14125:2011-05 Verfahren A // Dreipunktbiegeversuch

Prüfdatum	14.02.2022
Prüfer(in)	B. König

Parameter	Einheit	Sollwert	Ergebnis	Stabw.	Beurteilung
Biegemodul	MPa	Л.	9218	341	Л.
Biegespannung bei Maximum	MPa	.1.	236,4	9,7	Л.
Biegedehnung bei Maximum	%	./.	3,9	0,2	Л.
Gesamtwanddicke	mm	./.	19,6	0,2	Л.

Einzelheiten zur Prüfung sind dem Prüfprotokoll im Anhang zu entnehmen

Bernd König, Dipl.-Ing. (FH) Laborleitung St. Wendel, 2022-02-14

Der Anhang zu diesem Bericht umfasst 1 Seite(n).

Time	(%RH)Hu	midity	(°C)Temperature	(°F)Temperature	(°C)WB	(°F)WB	(°C)DP	(°F)DF
14/02/22	10.55.20	20.0	22.0	12.1	13.5	50.4	-1.1	- 30. i
14/02/22	17:08:20	24.0	15.7	60.3	9.0	48.2	-4.8	23.4
14/02/22	17:23:20	52.7	16.3	61.3	11.4	52.6	6.6	43.9
14/02/22	17:38:20	52.6	18.9	66.0	13.6	56.5	9.0	48.2
14/02/22	17:53:20	66.0	19.3	66.7	15.4	59.8	12.8	55.0
14/02/22	18:08:20	68.0	20.4	68.7	16.7	62.0	14.3	57.7
14/02/22	18:23:20	55.7	14.3	57.7	10.1	50.1	5.6	42.0
14/02/22	18:38:20	74.3	8.9	48.0	6.9	44.4	4.6	40.2
14/02/22	18:53:20	84.6	6.8	44.2	5.7	42.2	4.4	39.9
14/02/22	19:08:20	89.9	6.1	43.0	5.4	41.7	4.6	40.2
14/02/22	19:23:20	92.7	5.8	42.4	5.3	41.5	4.7	40.5
14/02/22	19:38:20	94.2	5.6	42.1	5.2	41.3	4.7	40.5
14/02/22	19:53:20	95.0	5.7	42.3	5.3	41.6	5.0	40.9
14/02/22	20:08:20	95.7	5.7	42.3	5.4	41.7	5.1	41.1
14/02/22	20:23:20	96.2	5.6	42.1	5.3	41.6	5.0	41.1
14/02/22	20:38:20	96.5	5.7	42.3	5.5	41.8	5.2	41.3
14/02/22	20:53:20	97.0	5.7	42.3	5.5	41.9	5.3	41.5
14/02/22	21:08:20	97.1	5.7	42.3	5.5	41.9	5.3	41.5
14/02/22	21:23:20	97.4	5.7	42.3	5.5	41.9	5.3	41.6
14/02/22	21:38:20	97.4	5.7	42.3	5.5	41.9	5.3	41.6
14/02/22	21:53:20	97.7	5.7	42.3	5.5	42.0	5.4	41.7
14/02/22	22:08:20	97.7	5.6	42.1	5.4	41.8	5.3	41.5
14/02/22	22:23:20	97.9	5.6	42.1	5.5	41.8	5.3	41.5
14/02/22	22:38:20	98.0	5.6	42.1	5.5	41.8	5.3	41.6
14/02/22	22:53:20	98.0	5.6	42.1	5.5	41.8	5.3	41.6
14/02/22	23:08:20	98.3	5.5	41.9	5.4	41.7	5.3	41.5
14/02/22	23:23:20	98.3	5.6	42.1	5.5	41.9	5.4	41.6
14/02/22	23:38:20	94.7	5.6	42.1	5.2	41.4	4.8	40.7
14/02/22	23:53:20	88.3	5.6	42.1	4.8	40.6	3.8	38.9

41 9

Test samples taken to verify both the mechanical resistance and the tightness under the internal pressure of the tunnel during its service.

The temperature and humidity values inside the tunnel were constantly registered.

Seite 3 von 3

No

15

17 18

19

20 21

22 23

24 25 26

27 28

29 30

15/02/22 00:08:20

87.4

55

THE LAMINATIONS SYSTEM

VALVE LAMINATION Lamination 500x500x20 mm

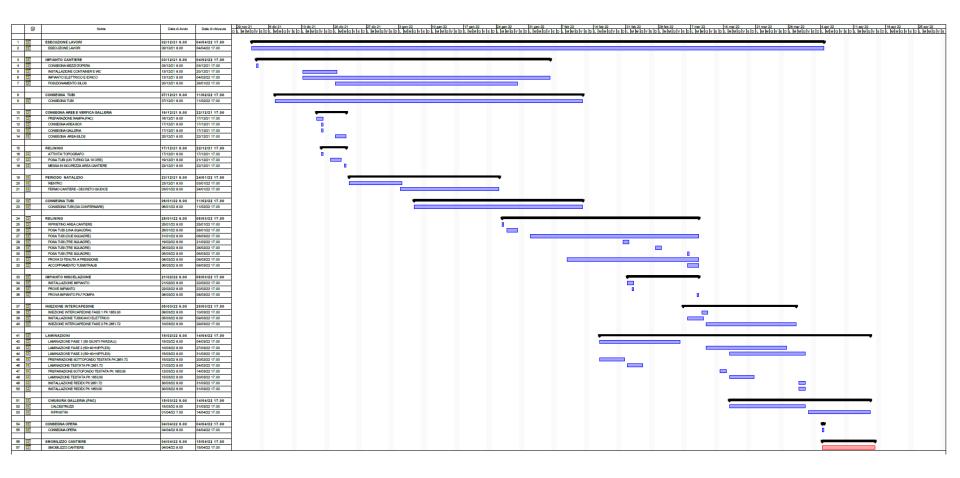
CONNECTION WITH THE OLD TUNNEL

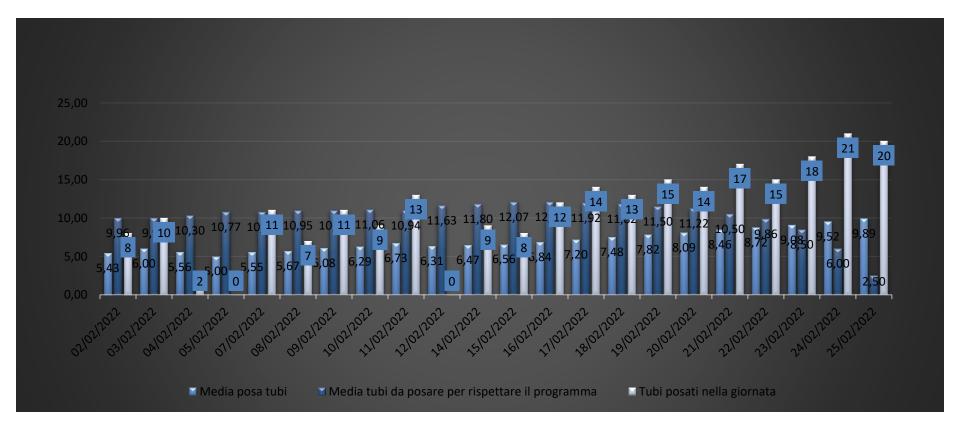
CONNECTING PRFV PIPES AND EXISTING TUNNEL

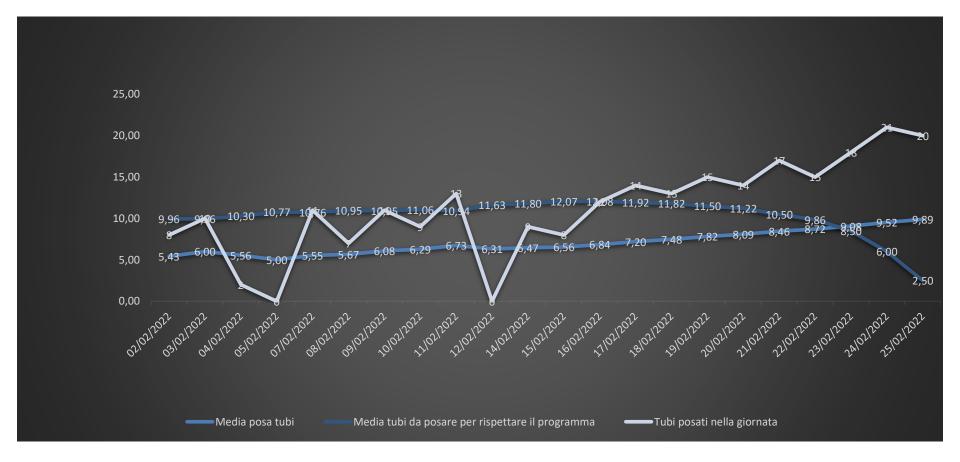
The connection between the existing tunnel and the GRP pipes was made through a REDEX-type coupling.

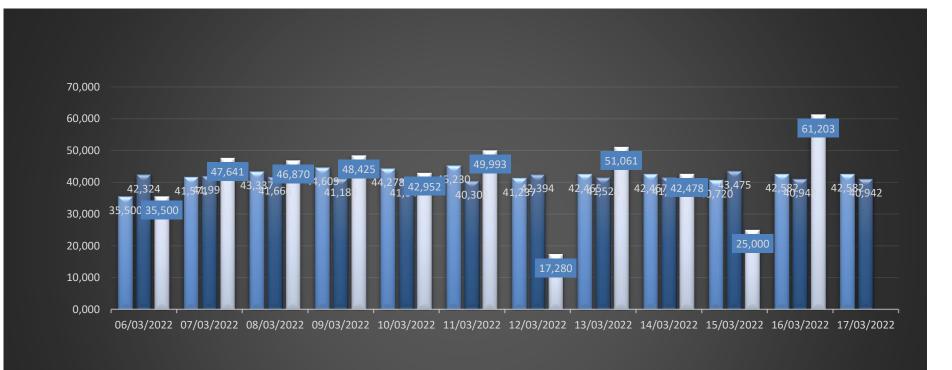
THE JOINT LEAK TEST UNI EN 1610

- Pressure 500 mbar
- Duration 5 min.


Sealing test on joints according to EN 1610

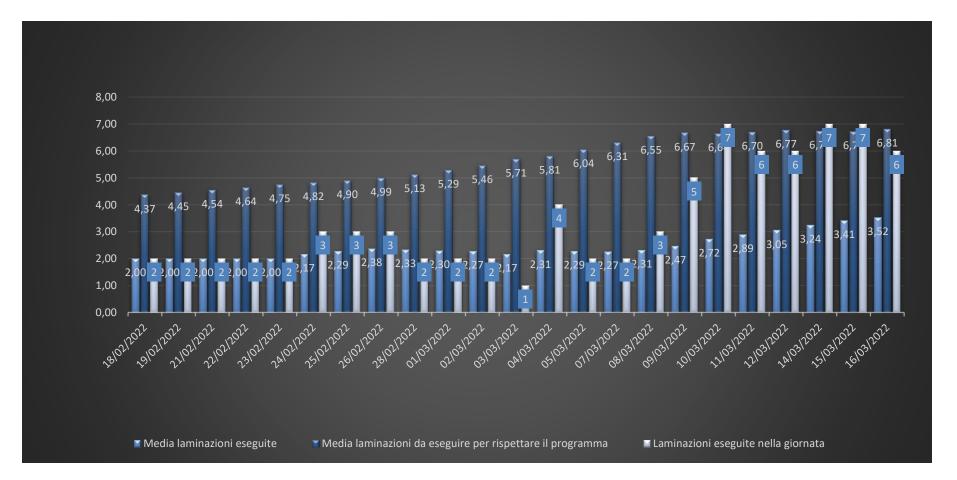

THE WORK SCHEDULE


THE WORK SCHEDULE: SIMULATION AND PIPE-INSTALLATION CONTROL


THE WORK SCHEDULE: SIMULATION AND PIPE-INSTALLATION CONTROL

THE WORK SCHEDULE: SIMULATION INJECTION PHASE AND CONTROL

Serie5 Serie10 Serie1


THE WORK SCHEDULE: SIMULATION INJECTION PHASE AND CONTROL

THE WORK SCHEDULE: SIMULATION LAMINATION PHASE AND CONTROL

